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Abstract

Quantifying the spatial pattern of landscapes has become a common task of many studies in

landscape ecology. Most of the existing software to compute landscape metrics is not well

suited to be used in interactive environments such as Jupyter notebooks nor to be included

as part of automated computational workflows. This article presents PyLandStats, an open-

source Pythonic library to compute landscape metrics within the scientific Python stack. The

PyLandStats package provides a set of methods to quantify landscape patterns, such as the

analysis of the spatiotemporal patterns of land use/land cover change or zonal analysis. The

implementation is based on the prevailing Python libraries for geospatial data analysis in a

way that they can be forthwith integrated into complex computational workflows. Notably, the

provided methods offer a large variety of options so that users can employ PyLandStats in

the way that best supports their needs. The source code is publicly available, and is organized

in a modular object-oriented structure that enhances its maintainability and extensibility.

Introduction

Landscape ecology is based on the notion that the spatial pattern of landscapes strongly influ-

ences the ecological processes that occur upon them [1]. From this perspective, quantifying the

spatial patterns of landscapes becomes a central prerequisite to the study of the pattern-process

relationships. Landscape ecologists often view landscapes as an heterogeneous spatial mosaic

of discrete patches, each representing a zone of relatively homogeneous conditions, where the

size, shape and configuration of patches significantly affects key ecosystem functions such as

biodiversity and fluxes of organisms and materials [2].

Recent decades have seen the development of a series of landscape metrics that quantify

several aspects of the spatial pattern of landscapes [3–5]. In a context of significant advances in

geographical information systems (GIS) and increasing availability of land use/land cover

(LULC) datasets, landscape metrics have been implemented within a variety of software pack-

ages [6]. The present article introduces PyLandStats, an open-source library to compute land-

scape metrics, which represents an advance over previously available software because of its

implementation within the most popular libraries of the scientific and data-centric Python

stack. Additionally, its modular and object-oriented design allows it to be efficiently used in
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interactive environments such as Jupyter notebooks as well as in automated computational

workflows, and eases the maintainability and extensibility of the code.

The remainder of the article describes the structure and use of PyLandStats by presenting a

thorough example analysis case for a sequence of three raster landscape snapshots of the Can-

ton of Vaud (Switzerland) for the years 2000, 2006 and 2012, which have been extracted from

the Corine Land Cover [7] inventory. The code snippets and materials to reproduce the figures

of the following four sections can be found in S1, S2, S3 and S4 Codes respectively.

Analysis of a single landscape

The basic unit of the PyLandStats library is the Landscape class, which represents the LULC

mosaic of a particular region at a given point in time. A Landscape instance mainly consists

of an array where each position represents the LULC class at the corresponding pixel of the

lanscape.

Since LULC data is most often stored in raster files (e.g., GeoTiff), the easiest way to instan-

tiate a Landscape object is by passing a path to a raster file as first argument, as in:

> ls = Landscape(‘path/to/raster.tif’)

The above call will use the rasterio Python library in order to read the raster files, and will

extract the pixel resolution and no-data value from the file metadata. Alternatively, Land-
scape instances might also be initialized by passing a NumPy array [8] as first argument,

which also requires specifying the x and y coordinates of pixel resolution as a tuple in the

res keyword argument. By default, PyLandStats assumes that zero values in the array repre-

sent pixels with no data. Otherwise, the no-data value can be specified by means of the

nodata keyword argument. A Landscape instance can be plotted at any moment by using

its plot_landscape method. Note that all the plotting methods of PyLandStats make use

of the matplotlib library [9].

Computing data frames of landscape metrics

Landscape metrics might be classified into two main groups (see S1 Table for the list of metrics

implemented in PyLandStats, their classification and their description). The first concerns met-

rics that provide a scalar value for each patch of the landscape, which are often referred to as

patch-level metrics. The second consists of metrics that provide a scalar value that aggregates a

characteristic of interest over a set of the patches. This second group allows for an additional

distinction between class-level metrics, which are computed over all patches of a given LULC

class, and landscape-level metrics, which are those computed over all the patches of a landscape.

For a given Landscape instance, the patch-level metrics can be computed by means of

the compute_patch_metrics_df method as in:

# ‘ls’ is a given ‘Landscape’ instance
> ls.compute_patch_metrics_df()

which will return a pandas data frame [10] as depicted in Table 1, where each row corre-

sponds to a patch of the landscape with its associated LULC class value and the computed

metrics.

Similarly, metrics can be computed at the class level by using the compute_class_me-
trics_df method as in:

> ls.compute_class_metrics_df()

which will return a pandas data frame as depicted in Table 2, where each row corresponds

to a LULC class and each column represents a metric computed at the row’s class level.

PyLandStats: Landscape metrics in Python
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Lastly, the landscape-level metrics can be computed by using the compute_landsca-
pe_metrics_df method as in:

> ls.compute_landscape_metrics_df()

which will return a pandas data frame as depicted in Table 3, where the only row features

the values of the metrics computed at the landscape level.

Customizing the landscape analysis

While a vast collection of metrics have been proposed over the literature of the last decades,

many of them are highly correlated with one another. As a matter of fact, Riitters et al. [11]

found that the characteristics represented by 55 prevalent landscape metrics could be reduced

to only 6 independent factors. Therefore, analysis cases tend to consider a limited subset of

metrics. To that end, the three methods that compute data frames of metrics showcased above

can be customized by means of the metrics keyword argument as in:

> ls.compute_class_metrics_df(
metrics = [‘proportion_of_landscape’, ‘edge_density’])

which will return a pandas data frame where only the specified metrics will appear as

columns.

On the other hand, certain metrics allow for some customization concerning the way in

which they are computed. In PyLandStats, each metric is defined in its dedicated method in

the Landscape class, which includes metric-specific keyword arguments that allow control-

ling how the metric is computed. For instance, when computing the edge density (ED), the

user might decide whether edges between LULC pixels and no-data pixels (e.g., landscape

boundaries) are considered, or whether the area should be converted to hectares. By default,

PyLandStats computes the metrics according to the definitions specified in FRAGSTATS v4

[5] (see also S5 Code), and therefore does not consider edges between LULC pixels and no-

data pixels, and converts areas to hectares. Nevertheless, the user might decide to change that

Table 1. Example data frame of patch-level metrics.

patch_id class_val area perimeter perimeter_area_ratio shape_index fractal_dimension euclidean_nearest_neighbor

0 1 115.0 10600.0 92.173913 2.409091 1.129654 1431.782106

1 1 13.0 2600.0 200.000000 1.625000 1.100096 223.606798

2 1 2.0 600.0 300.000000 1.000000 1.011893 223.606798

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

203 2 11.0 1800.0 163.636364 1.285714 1.052571 223.606798

204 2 2.0 800.0 400.000000 1.333333 1.069990 223.606798

205 2 14.0 2400.0 171.428571 1.500000 1.079705 282.842712

https://doi.org/10.1371/journal.pone.0225734.t001

Table 2. Example data frame of class-level metrics.

class_val total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 24729 7.701939 193 0.060111 2.069921 1431600 . . .

2 296346 92.298061 13 0.004049 89.451374 1431600 . . .

https://doi.org/10.1371/journal.pone.0225734.t002

Table 3. Example data frame of landscape-level metrics.

total_area number_of_patches patch_density largest_patch_index total_edge edge_density landscape_shape_index . . .

0 321075 206 0.064159 89.451374 1431600 4.458771 9.716931 . . .

https://doi.org/10.1371/journal.pone.0225734.t003
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by providing the count_boundary and hectares keyword arguments to the edge_-
density method as in:

> ls.edge_density()
4.4587713151132915
> ls.edge_density(count_boundary = True)
6.863816865218407
> ls.edge_density(count_boundary = True, hectares = False)
0.0006863816865218407

Similarly, the compute_patch_metrics_df, compute_class_metrics_df,

and compute_landscape_metrics_df accept the metrics_kws keyword argument

in the form of a dictionary, which allows setting the keyword arguments that must be passed to

each metrics’ method when computing the data frames. For instance, in order to compute a

class-level data frame with the proportion_of_landscape as a fraction instead of a per-

centage, and include the landscape boundaries in edge_density, the metrics_kws key-

word argument must be provided as in:

> ls.compute_class_metrics_df(
metrics_kws={
‘proportion_of_landscape’: {‘percent’: False},
‘edge_density’: {‘count_boundary’: True}

})

In the above example, the columns of the returned data frame will feature not only the pro-

portion of landscape and edge density, but all the available metrics instead. In order to com-

pute a reduced set of metrics, some of which with non-default arguments, both metrics and

metric_kws keyword arguments must be defined. For instance, in the code snippet below:

> ls.compute_class_metrics_df(
metrics = [
‘proportion_of_landscape’, ‘edge_density’, ‘fractal_dimension_am’

],
metrics_kws={
‘proportion_of_landscape’: {‘percent’: False},
‘edge_density’: {‘count_boundary’: True}

})

the returned data frame will be of the form depicted in Table 4.

Note that the metrics and metric_kws keyword arguments work in the same way for

the compute_patch_metrics_df and compute_landscape_metrics_df meth-

ods. Additionally, a list of LULC class values might be provided to the classes keyword argu-

ment of compute_class_metrics_df in order to compute the metrics for the specified

subset of classes only. The three keyword arguments are complimentary and might therefore be

used in conjunction. For instance, adding a classes = [1] to the foregoing code snippet

would return a data frame of the form depicted in Table 4 but featuring only the first row.

Spatiotemporal analysis

Landscape metrics are often applied to assess the spatiotemporal patterns of LULC change for

a given region by computing landscape metrics over a temporally-ordered sequence of

Table 4. Example of a data frame of class-level metrics computed with custom metrics and metrics_kws keyword arguments.

class_val proportion_of_landscape edge_density fractal_dimension_am

1 0.077019 4.502998 1.129561

2 0.922981 6.819590 1.204003

https://doi.org/10.1371/journal.pone.0225734.t004
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landscape snapshots. To this end, PyLandStats features the SpatioTemporalAnalysis
class, which is instantiated with a temporally-ordered sequence of landscape snapshots.

> input_filepaths = [
‘snapshot00.tif’, ‘snapshot06.tif’, ‘snapshot12.tif’

]
> dates = [2000, 2006, 2012] # the dates of each snapshot
> sta = pls.SpatioTemporalAnalysis(input_filepaths, dates = dates)

When initializing a SpatioTemporalAnalysis instance, a Landscape instance will

be created for each of the landscape snapshots provided as first argument. The dates argu-

ment might also be provided as string or datetime objects (see S2 Code).

Computing spatiotemporal data frames

Similarly to Landscape instances, the data frames of class and landscape-level metrics

of a SpatioTemporalAnalysis instance can be computed by means of the

compute_class_metrics_df and compute_landscape_metrics_df methods

respectively. For instance, following the snippet above, the data frame of class-level metrics

can be obtained as in:

> sta.compute_class_metrics_df()

which will return a data frame indexed by both the class value and date, as depicted in

Table 5.

Similarly, the data frame of landscape metrics can be obtained as follows:

> sta.compute_landscape_metrics_df()

where the resulting data frame will be indexed by the dates as depicted in Table 6.

Note that PyLandStats does not compute data frames for spatiotemporal analyses at the

patch level, given that new patches emerge and others disappear over the years and therefore

there is no common index upon which the data frames of patch-level metrics for different

snapshots could be assembled.

Customizing the spatiotemporal analysis

As with the Landscape class, the compute_class_metrics_df and

compute_landscape_metrics_df methods of the SpatioTemporalAnalysis
class also allow customizing how each metric is computed by means of the metrics and

Table 5. Example data frame of class-level metrics for a spatiotemporal analysis.

class_val dates total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 2000 24729 7.70194 193 0.0601106 2.06992 1.4316e+06 . . .

2006 24599 7.66145 200 0.0622907 2.02227 1.436e+06 . . .

2012 24766 7.71346 201 0.0626022 2.02227 1.4459e+06 . . .

2 2000 296346 92.2981 13 0.0040489 89.4514 1.4316e+06 . . .

2006 296476 92.3386 8 0.00249163 89.1318 1.436e+06 . . .

2012 296309 92.2865 8 0.00249163 89.0916 1.4459e+06 . . .

https://doi.org/10.1371/journal.pone.0225734.t005

Table 6. Example data frame of landscape-level metrics for a spatiotemporal analysis.

dates total_area number_of_patches patch_density largest_patch_index total_edge edge_density landscape_shape_index . . .

2000 321075 206 0.0641595 89.4514 1.4316e+06 4.45877 9.71693 . . .

2006 321075 208 0.0647824 89.1318 1.436e+06 4.47248 9.73633 . . .

2012 321075 209 0.0650938 89.0916 1.4459e+06 4.50331 9.77998 . . .

https://doi.org/10.1371/journal.pone.0225734.t006
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metric_kws arguments. Additionally, the classes keyword argument might be pro-

vided to compute_class_metrics_df in order to compute the metrics for the speci-

fied subset of classes only. For instance, the code snippet below:

> sta.compute_class_metrics_df(
metrics = [‘proportion_of_landscape’, ‘edge_density’,
‘fractal_dimension_am’, ‘landscape_shape_index’,
‘shannon_diversity_index’],

classes = [1],
metrics_kws = {
‘proportion_of_landscape’: {‘percent’: False},
‘edge_density’: {‘count_boundary’: True}})

will return a data frame of the form depicted in Table 7.

Note that although provided within the metrics keyword argument, the Shannon’s diver-

sity index does not appear in the data frame of Table 7 since it can only be computed at the

landscape level. Analogously, the proportion of landscape would not appear in the data frame

of landscape-level metrics.

Plotting the evolution of metrics

One of the most important features of the SpatioTemporalAnalysis class is plotting

the evolution of the metrics. To that end, the class features the plot_metric method, which

takes the snake case label of the respective metric name as first argument, e.g., for proportion

of landscape, the argument becomes ’proportion_of_landscape’ (see S1 Table for

the list of metrics implemented in PyLandStats and their respective snake case labels). In order

to plot the evolution of a metric at the class level, the value of the LULC class must be passed to

the class_val keyword argument as in:

# a class value of 1 represents “urban” LULC in this example
> sta.plot_metric(‘proportion_of_landscape’, class_val = 1)

which will produce a plot for the metric at the class level as depicted in Fig 1.

If the class_val keyword argument is ommited, the metric will instead be plotted at the

landscape level. For instance, the following snippet will plot both the class and landscape-level

area-weighted fractal dimension in the same matplotlib axis:

> ax = sta.plot_metric(‘fractal_dimension_am’, class_val = 1,
plot_kws={‘label’: ‘class level (urban)’})

> sta.plot metric(
‘fractal_dimension_am’, ax = ax, plot_kws={‘label’: ‘landscape

level’})
> ax.legend()

producing a plot as depicted in Fig 2.

In order to customize the resulting plot, the plot_metric method accepts, among other

keyword arguments, a plt_kws keyword argument that will be forwarded to the matplotlib’s

plot method (see the chapter 2 “Spatiotemporal analysis” of S1 Text).

Table 7. Example of a data frame of class-level metrics for a spatiotemporal analysis computed with custom classes, metrics and metrics_kws keyword

arguments.

class_val dates edge_density fractal_dimension_am landscape_shape_index proportion_of_landscape

1 2000 4.503 1.12956 22.9492 0.0770194

2006 4.51608 1.12336 23.0892 0.0766145

2012 4.54847 1.12347 23.181 0.0771346

https://doi.org/10.1371/journal.pone.0225734.t007
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Zonal analysis

Landscape metrics are very sensitive to scale, that is, to the pixel resolution and especially to

the spatial extent of the considered map [1, 12, 13]. To overcome such shortcoming, landscape

ecologists often turn to methods of multiscale analysis which explicitly consider multiple

scales, both in terms of resolution and map extents [14].

Fig 1. Example of a plot for a class-level metric in a spatiotemporal analysis.

https://doi.org/10.1371/journal.pone.0225734.g001

Fig 2. Example with a metric plotted at both the class and landscape level in a spatiotemporal analysis.

https://doi.org/10.1371/journal.pone.0225734.g002
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The PyLandStats library features two classes that might be used for such purpose. The first

is BufferAnalysis, which segments a given landscape based on a series of buffers of

increasing distances around a feature of interest, whereas the more generic ZonalAnalysis
allows the user to freely choose how the landscape is segmented by providing a list of NumPy

masks.

Buffer analysis around a feature of interest

In line with the classic concentric models of location and land use, evaluating the spatial varia-

tion of the environmental characteristics across the urban-rural gradient has become one of

the central topics of landscape ecology [15].

Consider a LULC raster file featuring a city and its rural hinterlands. Then, given a coordi-

nate that represents the center of the feature of interest (e.g., a Shapely point with its coordi-

nate reference system) and a list of buffer distances (in meters), a BufferAnalysis can be

instantiated as follows:

> from shapely.geometry import Point
# latitude and longitude of the center of Lausanne in the
OpenStreetMap
> base_mask = Point(6.6327025, 46.5218269)
> base_mask_crs = ‘+proj = longlat +ellps = WGS84 +datum = WGS84 +no
defs’
# buffer distances (in meters)
> buffer_dists = [10000, 15000, 20000]
# instantiation of ‘BufferAnalysis’
> ba = pls.BufferAnalysis(

path_to_raster, base_mask, buffer_dists,
base_mask_crs = base_mask_crs)

where the BufferAnalysis instance will generate the landscape of interest for each

buffer distance by masking the pixels of the input raster, as illustrated in Fig 3.

On the other hand, the base_mask argument might also be a polygon geometry (e.g.,

administrative boundaries) instead of a point. In such case, note that the list of buffer distances

might start from zero in order to start computing the metrics for the region defined by the

polygon geometry itself.

Like in the other classes, the data frames of class and landscape-level metrics can be

obtained through the compute_class_metrics_df and compute_landscape_me-
trics_df methods respectively. For instance, the following snippet:

> ba.compute_class_metrics_df()

will return a data frame indexed by both the class value and buffer distance, as depicted in

Table 8.

Fig 3. Landscapes generated by instantiating a BufferAnalysis with a raster of urban and non-urban LULC

classes (values of 1 and 2 respectively), the coordinates of the city center as base mask, and buffer distances of

10000, 15000 and 20000m (corresponding to the three subplots from left to right).

https://doi.org/10.1371/journal.pone.0225734.g003
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Again, the metrics that are considered in the analysis and how they metrics are computed

can be customized by providing the metrics and metrics_kws keyword arguments

respectively to the compute_class_metrics_df and compute_landscape_me-
trics_df methods, while the considered classes can be set as the classes keyword argu-

ment of compute_class_metrics_df.

On the other hand, and analogously to the SpatioTemporalAnalysis class, the met-

rics computed for each buffer distance in a BufferAnalysis instance can be plotted by

means of the plot_metric method. Again, plot_metric takes an optional class_-
val keyword argument that if provided, plots the metric at the class level, and otherwise, plots

the metric at the landscape level. For instance, the following snippet:

> ba.plot_metric(‘proportion_of_landscape’, class_val = 1)

will produce a plot for the metric at the class level as depicted in Fig 4.

Another approach to examine how landscape patterns change across the urban-rural gradi-

ent is to compute the metrics for each buffer ring that defined between each pair of distances.

For instance, for the buffer distances considered in latter example, i.e., 10000, 15000 and

20000, the metrics would be computed for the buffer rings that go from 0 to 10000 m, 10000-

Table 8. Example data frame of class-level metrics for a buffer analysis.

class_val buffer_dist total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 10000 7261 24.9648 20 0.068764 21.5472 223900 . . .

15000 9630 16.7106 46 0.0798223 11.5326 395200 . . .

20000 12149 13.3476 76 0.0834981 7.30169 565200 . . .

2 10000 21824 75.0352 4 0.0137528 74.3614 223900 . . .

15000 47998 83.2894 4 0.00694107 82.9493 395200 . . .

20000 78871 86.6524 5 0.0054933 86.3151 565200 . . .

https://doi.org/10.1371/journal.pone.0225734.t008

Fig 4. Example of a plot for a class-level metric in a buffer analysis. The x axis corresponds to the buffer distances.

https://doi.org/10.1371/journal.pone.0225734.g004
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15000 m and 15000-20000 m. Such analysis can be performed in PyLandStats by setting the

keyword argument buffer_rings to True, as in the snippet below:

> ba = pls.BufferAnalysis(
input_filepath, base_mask, buffer_dists,

base_mask_crs = base_mask_crs,
buffer_rings = True)

where BufferAnalysis will generate the landscapes as depicted in Fig 5.

Under such circumstances, the buffer distance of each in the data frame of class and land-

scape-level metrics will be strings that represent the buffer distances that correspond to the

start and end of each ring, as depicted in Table 9.

Accordingly, the plot_metric method of a BufferAnalysis will produce a figure

as depicted in Fig 6, where the x axis represents the buffer distances of the rings.

Generic zonal analysis

In certain analysis cases, the user might consider more appropriate to compute the metrics

along a decomoposition of the landscape different than concentric buffers, for example, rectan-

gular transects. To that end, PyLandStats features the ZonalAnalysis class, which instead

of a base mask, accepts a list of boolean arrays of the same shape of our landscape as masks to

define our transects (or any other type of subregion). Consider the code snippet below:

# this reads the input raster landscape and creates a boolean base
mask
# of the same shape of the landscape and filled with ‘False’ values
with rasterio.open(input_filepath) as src:

base_mask_arr = np.full(src.shape, False)

masks_arr = []

Fig 5. Landscapes generated by instantiating a BufferAnalysis with a raster of urban and non-urban LULC

classes (values of 1 and 2 respectively), the coordinates of the city center as base mask, and buffer distances of

10000, 15000 and 20000m (corresponding to the three subplots from left to right) and buffer_rings set to

True.

https://doi.org/10.1371/journal.pone.0225734.g005

Table 9. Example data frame of class-level metrics for a buffer analysis computing the metrics for the buffer rings.

class_val buffer_dist total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 0-10000 7261 24.9648 20 0.068764 21.5472 223900 . . .

10000-15000 2369 8.29976 37 0.129629 1.68518 168600 . . .

15000-20000 2519 7.54372 37 0.110805 3.11152 169100 . . .

2 0-10000 21824 75.0352 4 0.0137528 74.3614 223900 . . .

10000-15000 26174 91.7002 3 0.0105105 83.6282 168600 . . .

15000-20000 30873 92.4563 8 0.0239578 76.117 169100 . . .

https://doi.org/10.1371/journal.pone.0225734.t009
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# for a pixel resolution of 100m, this corresponds to transects of
30km
transect_len = 300
# this will iterate over three transects (0-30km, 30-60km, 60-90km)
for transect_start in range(0, 900, transect_len):

mask_arr = np.copy(base_mask_arr)
# the 400 and 600 serve to slice the landscape vertically along the
# 20km where the feature of interest is located
mask_arr[400:600,transect_start:transect_start+transect_len] =

True
masks_arr.append(mask_arr)

where the variable masks_arr will be a list of three NumPy boolean arrays, each corre-

sponding to a distinct rectangular transect, as plotted in Fig 7.

The instantiation of ZonalAnalysis requires the list of mask arrays (e.g., the

masks_arr variable created above) as second argument. Additionally, the keyword argu-

ment attribute_values might be used to map an identifying value or label to each of

our landscapes. In this example, a list of strings will be provided in a form which denotes that

each landscape corresponds to the transect from kilometers 0 to 30, 30 to 60 and 60 to 90

respectively:

> attribute_values = [‘0-30’, ‘30-60’, ‘60-90’]
> za = pls.ZonalAnalysis(

input_filepath, masks_arr, attribute_values = attribute_values)

where ZonalAnalysis will generate the landscapes as depicted in Fig 8.

In ZonalAnalysis instances, the data frames of metrics are indexed by the values pro-

vided to the keyword argument attribute_values as depicted in Table 10.

Again, the data frames of metrics ZonalAnalysis can also customized by providing the

metrics and metrics_kws keyword arguments to the compute_class_metrics_df

Fig 6. Example of a plot for a class-level metric in a buffer analysis that computes the metrics for the buffer rings. The x

axis delineates three discrete points, each corresponding to a buffer ring, and whose label represents the ring’s start and end

buffer distance.

https://doi.org/10.1371/journal.pone.0225734.g006
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and compute_landscape_metrics_df methods, and additionally by the classes
keyword argument in compute_class_metrics_df.

In order to plot a metric’s computed value for each subregion, the class ZonalAnalysis
features a plot_metric method which works in the same way as its counterpart in

SpatioTemporalAnalysis and BufferAnalysis. For instance, the following

snippet:

> za.plot_metric(‘proportion_of_landscape’, class_val = 1)

will produce a plot for the metric at the class level as depicted in Fig 9.

Spatiotemporal buffer analysis

The zonal analysis methods presented above are themselves multiscale analysis approaches

since they explicitly consider multiple map extents. Accordingly, the BufferAnalysis and

ZonalAnalysis classes might be employed to obtain scalograms, namely, response curves

of the metrics to changing the map extent [16].

Nevertheless, when performing spatiotemporal analyses, it might also be useful to evaluate

how the computed time series of metrics responds to changes in the map extent. To that end,

Fig 7. Example of a list of three boolean mask arrays that delineate three rectangular transects of a landscape.

https://doi.org/10.1371/journal.pone.0225734.g007

Fig 8. Landscapes generated by instantiating a ZonalAnalysis for three rectangular transects.

https://doi.org/10.1371/journal.pone.0225734.g008

Table 10. Example data frame of class-level metrics in a zonal analysis of three transects.

class_val attribute_values total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 0-30 2641 5.0768 37 0.0711251 0.707407 216700 . . .

30-60 9577 17.6965 40 0.0739126 12.2806 370500 . . .

60-90 1761 9.27281 9 0.0473909 6.90854 71900 . . .

2 0-30 49380 94.9232 2 0.0038446 94.9194 216700 . . .

30-60 44541 82.3035 6 0.0110869 81.8859 370500 . . .

60-90 17230 90.7272 6 0.0315939 53.2199 71900 . . .

https://doi.org/10.1371/journal.pone.0225734.t010
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PyLandStats features an additional SpatioTemporalBufferAnalysis class, which is

instantiated like a BufferAnalysis except that the first argument is a temporally-ordered

list of landscape raster snapshots—like in the SpatioTemporalAnalysis class—instead

of a single raster landscape. In addition, like the SpatioTemporalAnalysis class, a list

with the dates that correspond to each of the landscape snapshots can be passed to the keyword

argument dates. Putting it all together, SpatioTemporalBufferAnalysis can be

instantiated as in:

# Note: ‘input_filepaths’ is a list (like in ‘SpatioTemporalAnalysis’)
> stba = pls.SpatioTemporalBufferAnalysis(

input_filepaths, base_mask, buffer_dists,
base_mask_crs = base_mask_crs, dates = [2000, 2006, 2012])

Like BufferAnalysis, a SpatioTemporalBufferAnalysis can also be

instantiated from a polygon geometry. The data frame of class and landscape-level

metrics can be computed by means of the the compute_class_metrics_df and

compute_landscape_metrics_df methods respectively, which again, might also be

customized by providing the metrics and metrics_kws keyword arguments, and addi-

tionally by the classes keyword argument in compute_class_metrics_df. In

SpatioTemporalBufferAnalysis instances, the data frames are indexed by the buffer

distances and the snapshot dates (and also by the LULC class values in the class-level data

frame, as depicted in Table 11).

The SpatioTemporalBufferAnalysis class features a plot_metric
method with the same signature of its counterparts in SpatioTemporalAnalysis,

BufferAnalysis and ZonalAnalysis. For example, the snippet below:

> stba.plot_metric(‘fractal_dimension_am’)

Fig 9. Example of a plot for a class-level metric in a zonal analysis of three transects. The x axis corresponds to the

values provided to the keyword argument attribute_values provided to the initialization of

ZonalAnalysis.

https://doi.org/10.1371/journal.pone.0225734.g009
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will plot the temporal evolution of the area-weighted fractal dimension at the landscape

level for the three buffer distances in the same axis, producing an output as depicted in Fig 10.

Although this is beyond the scope of this article, the above plot suggests that the area-

weighted fractal dimension shows a predictable response to changing the spatial extent of the

considered landscape [16, 17].

Table 11. Example data frame of class-level metrics in a spatiotemporal buffer analysis.

buffer_dist class_val dates total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

10000 1 2000 7261 24.9648 20 0.068764 21.5472 223900 . . .

2006 7205 24.7722 20 0.068764 21.0211 226600 . . .

2012 7205 24.7722 20 0.068764 21.0211 227000 . . .

2 2000 21824 75.0352 4 0.0137528 74.3614 223900 . . .

2006 21880 75.2278 4 0.0137528 74.5539 226600 . . .

2012 21880 75.2278 4 0.0137528 74.5539 227000 . . .

15000 1 2000 9630 16.7106 46 0.0798223 11.5326 395200 . . .

2006 9278 16.0998 49 0.0850281 11.2671 391300 . . .

2012 9320 16.1727 50 0.0867634 11.2671 395500 . . .

2 2000 47998 83.2894 4 0.00694107 82.9493 395200 . . .

2006 48350 83.9002 4 0.00694107 83.5601 391300 . . .

2012 48308 83.8273 4 0.00694107 83.4872 395500 . . .

20000 1 2000 12149 13.3476 76 0.0834981 7.30169 565200 . . .

2006 11827 12.9938 78 0.0856955 7.1336 566200 . . .

2012 11882 13.0543 79 0.0867941 7.1336 571400 . . .

2 2000 78871 86.6524 5 0.0054933 86.3151 565200 . . .

2006 79193 87.0062 6 0.00659196 86.6678 566200 . . .

2012 79138 86.9457 7 0.00769062 86.604 571400 . . .

https://doi.org/10.1371/journal.pone.0225734.t011

Fig 10. Example of a plot for a landscape-level metric in a spatiotemporal buffer analysis.

https://doi.org/10.1371/journal.pone.0225734.g010
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The PyLandStats library

Availability and installation

The source code of PyLandStats is available in a GitHub repository at https://github.com/

martibosch/pylandstats, and is licensed under the open source GNU General Public License 3

(GNU GPLv3) to ensure that any derivative work is kept as open source. The easiest way to

install PyLandStats is by installing the dedicated conda recipe hosted on the conda-forge chan-

nel at https://anaconda.org/conda-forge/pylandstats, as in:

$ conda install -c conda-forge pylandstats

The above command will install all the necessary requirements to run all the features of

PyLandStats. Alternatively, a dedicated Python package is hosted on the Python Package Index

(PyPI) at https://pypi.org/project/pylandstats/, and can be readily installed with pip as in:

$ pip install pylandstats

Nevertheless, the BufferAnalysis and SpatioTemporalBufferAnalysis clas-

ses have dependencies that cannot be installed with pip, namely the Geospatial Data Abstrac-

tion Library (GDAL) and the Geometry Engine Open Source (GEOS). In order to use these

two PyLandStats classes, GDAL and GEOS must be present at the time of installing PyLand-

Stats, which in this case will further require specifying the geo extra requirements as in:

$ pip install pylandstats[geo]

Unit tests are run within the Travis Continuous Integration (Travis CI) platform at https://

travis-ci.org/martibosch/pylandstats every time that new commits ar pushed to the GitHub

repository. Additionally, test coverage is reported on Coveralls at https://coveralls.io/github/

martibosch/pylandstats?branch=master.

The documentation of PyLandStats is hosted in Read the Docs at https://pylandstats.

readthedocs.io/ and is also available in S1 Text. Additionally, a collection of example note-

books with a thorough overview of PyLandStats’s features is provided at a dedicated GitHub

repository at https://github.com/martibosch/pylandstats-notebooks, which can be executed

interactively online by means of the Binder web service [18]. Such repository includes unit

tests which ensure the correctness of the computations (see S5 Code).

Finally, an example application of PyLandStats in an academic article can be found in

the analysis of the spatiotemporal patterns of urbanization of three Swiss urban agglomerations

by Bosch and Chenal [19], and all the code and materials necessary to reproduce the results are

available in a dedicated GitHub repository at https://github.com/martibosch/swiss-urbanization.

Dependencies and implementation details

The PyLandStats package is fully implemented in Python, and requires the Python packages

NumPy, SciPy, pandas, matplotlib, rasterio. The first four are among the most popular pack-

ages for scientific and data-centric Python and are used for a wide-variety of scientific needs,

whereas rasterio is a popular library to read and write geospatial raster data. In PyLandStats,

NumPy arrays are used to represent landscapes and patch-level metrics. In addition, NumPy

functions are used in the computations of all the implemented landscape metrics. The SciPy

library is used to segment the patches in the landscape arrays, compute the inter-patch

nearest-neighbor distances, and to compute the coefficient of variation of the patch-level

landscape metrics. The pandas data frames are used to build the data frames of landscape met-

rics, matplotlib is used to produce the plots and rasterio is used to read raster data, plot the

landscapes as well as to rasterize the vector geometries used in BufferAnalysis and

SpatioTemporalBufferAnalysis. As noted above, the foregoing two classes further

require the GeoPandas and Shapely Python packages.
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The implementation of PyLandStats is organized in Python modules, where the classes

described throughout this paper are defined. Such object-oriented design offers many

advantages. On the one hand, it allows both for a conceptual separation and reusability of

the functionalities, which enhances the maintainability and extensibility of PyLandStats. On

the other hand, Python properties serve to cache results that are computationally expensive

to obtain, which can later be accessed in constant (almost immediate) time. This mechanism

is exploited to cache intermediate results that are later used to compute the metrics (see S6

Code). More precisely, instances of the Landscape class cache the list of patches, each

with its respective LULC class, area, perimeter and nearest-neigbhor distance, as well as the

pixel adjacency matrix, i.e., the number of adjacencies between pixels of each landscape class

(including adjacencies between pixels of the same class). Furthermore, such mechanism

eases the task of implementing new metrics, since the vast majority of landscape metrics

found throughout the academic literature can be straight-forwardly computed out of such

cached properties (see the section 1.1 “List of implemented metrics” of S1 Text as well as

[5]). Finally, as follows from the cache mechanism described above, the memory size of a

Landscape instance scales linearly with the number of patches present in the respective

raster landscape.

Regarding the performance, the most expensive operations of PyLandStats are the compu-

tation of the adjacency matrix, and more importantly, the computation of the inter-patch near-

est-neighbor distances. The code for the former is transformed from Python to C++ by means

of the Pythran ahead-of-time compiler [20], which achieves speed-ups of an order of magni-

tude of three. The code for the latter consists of a slow nested Python loop that iterates over

each patch of each class and employs SciPy’s implementation of the K-d tree in Cython [21] in

order to find the nearest neigbor of each patch. The computation of the inter-patch nearest-

neighbor distances is by far the main performance bottleneck of PyLandStats (see S6 Code),

and it is therefore recommended that in analysis cases that do not require computing euclid-

ean nearest-neighbor metrics avoid its computation by making use of the metrics keyword

argument as explained above.

Improvements of PyLandStats over existing software packages

There have been many other freely-available software packages to compute landscape metrics

[6] (see Table 12). By far, the most popular one has been FRAGSTATS [22], yet as a stand-alone

software, its functions cannot be directly integrated into advanced computational workflows.

Furthermore, FRAGSTATS is not open-source software. Recently, the open-source R package

landscapemetrics [23] has been developed to overcome such shortcomings by relying on a well-

Table 12. Comparison of FRAGSTATS, landscapemetrics, LecoS and PyLandStats.

Characteristic FRAGSTATS landscapemetrics LecoS PyLandStats

open source no yes yes yes

programming language ? R Python Python

cross-platform compatibility no yes yes yes

integration into advanced workflows no yes QGIS only yes

Benchmark Vaud [s] 0.61 14.27 - 0.91

Benchmark Bern and Valais [s] 33.31 553.45 - 32.2

The two benchmarks consist in the computation of the 95 metrics implemented in PyLandStats for the landscape snapshots of the canton of Vaud (889x916 pixels of 2

LULC classes) and the cantons of Bern and Valais (1640x1319 pixels of 28 LULC classes) respectively (see S6 Code for more details). Both landscapes have been derived

from the Corine Land Cover [7] dataset for the year 2000. Note that LecoS has been excluded from the benchmarks since only features 20 landscape metrics.

https://doi.org/10.1371/journal.pone.0225734.t012
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established spatial framework in R. On the other hand, the only available tool to compute land-

scape metrics in Python is the LecoS package [24], which is designed as a QGIS plugin.

The computed values for the landscape metrics in PyLandStats are the same as in FRAG-

STATS, with a maximum relative difference of 0.1% (see S5 Code). Furthermore, the perfor-

mance of both packages is very similar. Nevertheless, unlike FRAGSTATS, PyLandStats is

open source and it is therefore straightfoward for users to contribute to its development on its

GitHub repository. On the other hand, PyLandStats is an alternative to landscapemetrics for

those users that prefer to write their computational workflows in Python rather than R. Addi-

tionally, the cache mechanisms included within PyLandStats lead to significantly better perfor-

mance and make it more suitable for experimentation in interactive environments such as

Jupyter notebooks [25], since it ensures that the marginal cost of subsequent calls to compute a

metric are minimal (see S6 Code).

Finally, although LecoS is based on the NumPy and SciPy stack (like PyLandStats), only 20

metrics have been implemented, and its design as a QGIS plugin forces the users to adapt the

computational workflows to QGIS. In sharp contrast, PyLandStats is designed as a Python

package which can be directly used in Python scripts, Jupyter notebooks and in other Python

packages including QGIS plugins.

In view of the growing popularity of Jupyter notebooks and continuous releases of new

Python packages to visualize geospatial data interactively, it is reasonable to expect that geospa-

tial scientists, including landscape ecologists, will increasingly turn to the Jupyter environ-

ments for their analyses. From this perspective, PyLandStats intends to offer a Python package

that geospatial scientists can use in order to compute landscape metrics, and whose modularity

and object-oriented design allows it to evolve and adapt to new developments in the Python

and Jupyter ecosystem.
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S1 Text. PyLandStats documentation.

(PDF)

S1 Table. Table of metrics implemented in PyLandStats.

(PDF)

S1 Code. Landscape analysis with PyLandStats for the canton of Vaud (Switzerland), as

Jupyter notebook.

(IPYNB)

S2 Code. Spatiotemporal analysis with PyLandStats for the canton of Vaud (Switzerland),

as Jupyter notebook.

(IPYNB)

S3 Code. Zonal analysis with PyLandStats for the canton of Vaud (Switzerland), as Jupyter

notebook.

(IPYNB)

S4 Code. Spatiotemporal buffer analysis with PyLandStats for the canton of Vaud (Swit-

zerland), as Jupyter notebook.
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S5 Code. Comparison of the metrics computed in FRAGSTATS v4 and PyLandStats for

the canton of Vaud (Switzerland), as Jupyter notebook.

(IPYNB)

PyLandStats: Landscape metrics in Python

PLOS ONE | https://doi.org/10.1371/journal.pone.0225734 December 5, 2019 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225734.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225734.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225734.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225734.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225734.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225734.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225734.s007
https://doi.org/10.1371/journal.pone.0225734


S6 Code. Performance notes and benchmarks comparing FRAGSTATS v4, landscape-

metrics and PyLandStats, as Jupyter notebook.

(IPYNB)

Author Contributions

Conceptualization: Martı́ Bosch.

Data curation: Martı́ Bosch.

Software: Martı́ Bosch.

Visualization: Martı́ Bosch.

Writing – original draft: Martı́ Bosch.

References
1. Turner MG. Landscape ecology: the effect of pattern on process. Annual review of ecology and system-

atics. 1989; 20(1):171–197. https://doi.org/10.1146/annurev.es.20.110189.001131

2. Pickett ST, Cadenasso ML. Landscape ecology: spatial heterogeneity in ecological systems. Science.

1995; 269(5222):331–334. https://doi.org/10.1126/science.269.5222.331 PMID: 17841249

3. O’Neill R, Krummel J, Gardner R, Sugihara G, Jackson B, DeAngelis D, et al. Indices of landscape pat-

tern. Landscape ecology. 1988; 1(3):153–162. https://doi.org/10.1007/BF00162741

4. Turner MG. Spatial and temporal analysis of landscape patterns. Landscape ecology. 1990; 4(1):21–

30. https://doi.org/10.1007/BF02573948

5. McGarigal K, Cushman SA, Ene E. FRAGSTATS v4: spatial pattern analysis program for categorical

and continuous maps; 2012. Computer software program produced by the authors at the University of

Massachusetts, Amherst. Available at: http://www.umass.edu/landeco/research/fragstats/fragstats.

html.

6. Steiniger S, Hay GJ. Free and open source geographic information tools for landscape ecology. Eco-

logical informatics. 2009; 4(4):183–195. https://doi.org/10.1016/j.ecoinf.2009.07.004

7. Heymann Y, Steenmans C, Croisille G, Bossard M. CORINE land cover: Technical guide; 1994.

8. Van Der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical compu-

tation. Computing in Science & Engineering. 2011; 13(2):22. https://doi.org/10.1109/MCSE.2011.37

9. Hunter JD. Matplotlib: A 2D graphics environment. Computing in science & engineering. 2007; 9(3):90.

https://doi.org/10.1109/MCSE.2007.55

10. McKinney W. Data structures for statistical computing in python. In: van der Walt S, Millman J, editors.

Proceedings of the 9th Python in Science Conference. vol. 445. Austin, TX; 2010. p. 51–56.

11. Riitters KH, O’Neill R, Hunsaker C, Wickham JD, Yankee D, Timmins S, et al. A factor analysis of land-

scape pattern and structure metrics. Landscape ecology. 1995; 10(1):23–39. https://doi.org/10.1007/

BF00158551

12. Meentemeyer V, Box EO. Scale effects in landscape studies. In: Landscape heterogeneity and distur-

bance. Springer; 1987. p. 15–34.

13. Saura S, Martinez-Millan J. Sensitivity of landscape pattern metrics to map spatial extent. Photogram-

metric engineering and remote sensing. 2001; 67(9):1027–1036.

14. Wu J, Jelinski DE, Luck M, Tueller PT. Multiscale analysis of landscape heterogeneity: scale variance

and pattern metrics. Geographic information sciences. 2000; 6(1):6–19.

15. McDonnell MJ, Pickett ST. Ecosystem structure and function along urban-rural gradients: an unex-

ploited opportunity for ecology. Ecology. 1990; 71(4):1232–1237.

16. Wu J, Shen W, Sun W, Tueller PT. Empirical patterns of the effects of changing scale on landscape

metrics. Landscape Ecology. 2002; 17(8):761–782. https://doi.org/10.1023/A:1022995922992

17. Wu J. Effects of changing scale on landscape pattern analysis: scaling relations. Landscape ecology.

2004; 19(2):125–138. https://doi.org/10.1023/B:LAND.0000021711.40074.ae

18. Matthias Bussonnier, Jessica Forde, Jeremy Freeman, Brian Granger, Tim Head, Chris Holdgraf, et al.

Binder 2.0—Reproducible, interactive, sharable environments for science at scale. In: Proceedings of

the 17th Python in Science Conference; 2018. p. 113–120.

PyLandStats: Landscape metrics in Python

PLOS ONE | https://doi.org/10.1371/journal.pone.0225734 December 5, 2019 18 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225734.s008
https://doi.org/10.1146/annurev.es.20.110189.001131
https://doi.org/10.1126/science.269.5222.331
http://www.ncbi.nlm.nih.gov/pubmed/17841249
https://doi.org/10.1007/BF00162741
https://doi.org/10.1007/BF02573948
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
https://doi.org/10.1016/j.ecoinf.2009.07.004
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/BF00158551
https://doi.org/10.1007/BF00158551
https://doi.org/10.1023/A:1022995922992
https://doi.org/10.1023/B:LAND.0000021711.40074.ae
https://doi.org/10.1371/journal.pone.0225734


19. Bosch M, Chenal J. Spatiotemporal patterns of urbanization in three Swiss urban agglomerations:

insights from landscape metrics, growth modes and fractal analysis. bioRxiv. 2019; p. 645549.

20. Guelton S, Brunet P, Amini M, Merlini A, Corbillon X, Raynaud A. Pythran: Enabling static optimization

of scientific python programs. Computational Science & Discovery. 2015; 8(1):014001. https://doi.org/

10.1088/1749-4680/8/1/014001

21. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The best of both worlds. Com-

puting in Science & Engineering. 2011; 13(2):31. https://doi.org/10.1109/MCSE.2010.118

22. McGarigal K, Marks BJ. FRAGSTATS: spatial pattern analysis program for quantifying landscape struc-

ture. Gen Tech Rep PNW-GTR-351 Portland, OR: US Department of Agriculture, Forest Service,

Pacific Northwest Research Station 122 p. 1995;351.

23. Hesselbarth MH, Sciaini M, With KA, Wiegand K, Nowosad J. landscapemetrics: an open-source R tool

to calculate landscape metrics. Ecography. 2019.

24. Jung M. LecoS—A python plugin for automated landscape ecology analysis. Ecological informatics.

2016; 31:18–21. https://doi.org/10.1016/j.ecoinf.2015.11.006
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